Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Biogerontology ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619670

RESUMO

Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj < 0.05) differentially expressed genes, with 947 upregulated and 744 downregulated genes. Notably, the expression of three important aging-related genes, SIR2, SOD1, and SOD2, showed a significant difference following PLME treatment. The subsequent integration of these targeted genes with GO and KEGG pathway analysis revealed the multifaceted nature of PLME's anti-aging effects in BY611 yeast cells. Enriched GO and KEGG analysis showed that PLME treatment promotes the upregulation of SIR2, SOD1, and SOD2 genes, leading to a boosted cellular antioxidant defense system, reduced oxidative stress, regulated cell metabolism, and maintain genome stability. These collectively increased longevities in PLME-treated BY611 yeast cells and indicate the potential anti-aging action of PLME through the modulation of SIR2 and SOD genes. The present study provided novel insights into the roles of SIR2, SOD1, and SOD2 genes in the anti-aging effects of PLME treatment, offering promising interventions for promoting healthy aging.

2.
Int J Biol Macromol ; 264(Pt 1): 130544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428778

RESUMO

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive genetic disorder characterized by progressive and severe muscle weakening and degeneration. Among the various forms of muscular dystrophy, it stands out as one of the most common and impactful, predominantly affecting boys. The condition arises due to mutations in the dystrophin gene, a key player in maintaining the structure and function of muscle fibers. The manuscript explores the structural features of dystrophin protein and their pivotal roles in DMD. We present an in-depth analysis of promising therapeutic approaches targeting dystrophin and their implications for the therapeutic management of DMD. Several therapies aiming to restore dystrophin protein or address secondary pathology have obtained regulatory approval, and many others are ongoing clinical development. Notably, recent advancements in genetic approaches have demonstrated the potential to restore partially functional dystrophin forms. The review also provides a comprehensive overview of the status of clinical trials for major therapeutic genetic approaches for DMD. In addition, we have summarized the ongoing therapeutic approaches and advanced mechanisms of action for dystrophin restoration and the challenges associated with DMD therapeutics.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X , Distrofia Muscular de Duchenne , Masculino , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Distrofina/genética , Distrofina/metabolismo , Distrofina/uso terapêutico , Fibras Musculares Esqueléticas/metabolismo
3.
Front Public Health ; 12: 1364221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550311

RESUMO

Pharmacogenomics (PGx) is an important component of precision medicine that promises tailored treatment approaches based on an individual's genetic information. Exploring the initiatives in research that help to integrate PGx test into clinical setting, identifying the potential barriers and challenges as well as planning the future directions, are all important for fruitful PGx implementation in any population. Qatar serves as an exemplar case study for the Middle East, having a small native population compared to a diverse immigrant population, advanced healthcare system, national genome program, and several educational initiatives on PGx and precision medicine. This paper attempts to outline the current state of PGx research and implementation in Qatar within the global context, emphasizing ongoing initiatives and educational efforts. The inclusion of PGx in university curricula and healthcare provider training, alongside precision medicine conferences, showcase Qatar's commitment to advancing this field. However, challenges persist, including the requirement for population specific implementation strategies, complex genetic data interpretation, lack of standardization, and limited awareness. The review suggests policy development for future directions in continued research investment, conducting clinical trials for the feasibility of PGx implementation, ethical considerations, technological advancements, and global collaborations to overcome these barriers.


Assuntos
Farmacogenética , Medicina de Precisão , Humanos , Catar , Saúde Pública , Atenção à Saúde
5.
Front Pharmacol ; 15: 1343569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348393

RESUMO

Chemical-induced neurotoxicity is increasingly recognized to accelerate the development of neurodegenerative disorders (NDs), which pose an increasing health burden to society. Attempts are being made to develop drugs that can cross the blood-brain barrier and have minimal or no side effects. Nobiletin (NOB), a polymethoxylated flavonoid with anti-oxidative and anti-inflammatory effects, has been demonstrated to be a promising compound to treat a variety of NDs. Here, we investigated the potential role of NOB in sodium arsenate (NA)-induced deregulated miRNAs and target proteins in human neural progenitor cells (hNPCs). The proteomics and microRNA (miRNA) profiling was done for different groups, namely, unexposed control, NA-exposed, NA + NOB, and NOB groups. Following the correlation analysis between deregulated miRNAs and target proteins, RT-PCR analysis was used to validate the selected genes. The proteomic analysis showed that significantly deregulated proteins were associated with neurodegeneration pathways, response to oxidative stress, RNA processing, DNA repair, and apoptotic process following exposure to NA. The OpenArray analysis confirmed that NA exposure significantly altered miRNAs that regulate P53 signaling, Wnt signaling, cell death, and cell cycle pathways. The RT-PCR validation studies concur with proteomic data as marker genes associated with autophagy and apoptosis (HO-1, SQSTM1, LC-3, Cas3, Apaf1, HSP70, and SNCA1) were altered following NA exposure. It was observed that the treatment of NOB significantly restored the deregulated miRNAs and proteins to their basal levels. Hence, it may be considered one of its neuroprotective mechanisms. Together, the findings are promising to demonstrate the potential applicability of NOB as a neuroprotectant against chemical-induced neurotoxicity.

6.
Inflammopharmacology ; 32(2): 1593-1606, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308794

RESUMO

BACKGROUND: Inflammation is a key biological reaction that comprises a complex network of signals that both initiate and stop the inflammation process. PURPOSE: This study targets to evaluate the anti-inflammatory potential of the leaves of the Plectranthus rugosus (P. rugosus) plant involving both in vitro and in vivo measures. The current available drugs exhibit serious side effects. Traditional medicines impart an essential role in drug development. P. rugosus is a plant used in traditional medicine of Tropical Africa, China, and Australia to treat various diseases. METHODS: Lipopolysaccharide (LPS), an endotoxin, kindles macrophages to discharge huge quantities of pro-inflammatory cytokines like TNF-α and IL-6. So, clampdown of macrophage stimulation may have a beneficial potential to treat various inflammatory disorders. The leaves of the P. rugosus are used for swelling purpose by local population; however, its use as an anti-inflammatory agent and associated disorders has no scientific evidence. RESULTS: The extracts of the plant Plectranthus rugosus ethanolic extract (PREE), Plectranthus rugosus ethyl acetate extract (PREAF), and the compound isolated (oleanolic acid) suppress the pro-inflammatory cytokines (IL-6 and TNF-α) and nitric oxide (NO), confirming its importance in traditional medicine. CONCLUSION: The pro-inflammatory cytokines are inhibited by P. rugosus extracts, as well as an isolated compound oleanolic acid without compromising cell viability.


Assuntos
Antineoplásicos , Ácido Oleanólico , Plectranthus , Antioxidantes/uso terapêutico , Fator de Necrose Tumoral alfa , Interleucina-6 , Ácido Oleanólico/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/uso terapêutico , Inflamação/tratamento farmacológico , Citocinas , Antineoplásicos/uso terapêutico , Óxido Nítrico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Lipopolissacarídeos/farmacologia
7.
Mol Neurobiol ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165583

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic disorder that causes muscle weakness and degeneration. In this study, we identified potential biomarkers and drug targets for DMD through a comprehensive meta-analysis of mRNA profiles. We conducted an in-depth analysis of three microarray datasets from the GEO database, utilizing the Affymetrix platform. A rigorous data pre-processing pipeline encompassed background correction, normalization, log2 transformation and probe-to-gene symbol mapping. Robust multi-array average method followed by Limma package in R was employed to ensure differential expression analysis within individual datasets, yielding gene-specific p-values. We identified 63 genes exhibiting statistically significant differential expression across the three datasets (p < 0.05) and an absolute log fold change > 1.5. Functional enrichment analyses of these differentially expressed genes were done, followed by pathway analyses. Our results suggested pertinent biological processes, molecular functions and cellular components associated with DMD. Finally, eight hub genes-COL6A3, COL1A1, COL3A1, COL1A2, POSTN, TIMP1, THBS2 and SPP1-were pinpointed as central players in the network. Two differentially expressed genes with substantial absolute log-fold changes, namely, DMD, downregulated and MYH3, upregulated, were identified as potential therapeutic candidates. In light of these findings, our work contributes not only to understanding DMD at the molecular level but also presents potential targets for therapeutic strategies. Finally, our study facilitates the development of therapeutic interventions that can effectively control and mitigate the impact of DMD.

8.
J Biomol Struct Dyn ; : 1-22, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38174738

RESUMO

Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and other small molecules across biological membranes. AQPs are involved in various physiological processes and pathological conditions, including cancer, making them as potential targets for anticancer therapy. However, the development of selective and effective inhibitors of AQPs remains a challenge. In this study, we explored the possibility of using natural sapogenins, a class of plant-derived aglycones of saponins with diverse biological activities, as potential inhibitors of AQPs. We performed molecular docking, dynamics simulation and binding energy calculation to investigate the binding and inhibition mechanism of 19 sapogenins against 13 AQPs (AQP0-AQP13) that are overexpressed in various cancers. Our results showed that out of 19 sapogenins, 8 (Diosgenin, Gitogenin, Tigogenin, Ruscogenin, Yamogenin, Hecogenin, Sarsasapogenin and Smilagenin) exhibited acceptable drug-like characteristics. These sapogenin also exhibited favourable binding affinities in the range of -7.6 to -13.4 kcal/mol, and interactions within the AQP binding sites. Furthermore, MD simulations provided insights into stability and dynamics of the sapogenin-AQP complexes. Most of the fluctuations in binding pocket were observed for AQP0-Gitogenin and AQP4-Diosgenin. However, remaining protein-ligand complex showed stable root mean square deviation (RMSD) plots, strong hydrogen bonding interactions, stable solvent-accessible surface area (SASA) values and minimum distance to the receptor. These observations suggest that natural sapogenin hold promise as novel inhibitors of AQPs, offering a basis for the development of innovative therapeutic agents for cancer treatment. However, further validation of the identified compounds through experiments is essential for translating these findings into therapeutic applications.Communicated by Ramaswamy H. Sarma.

9.
J Biomol Struct Dyn ; 42(3): 1368-1380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37191027

RESUMO

A revival interest has been given to natural products as sources of phytocompounds to be used as alternative treatment against infectious diseases. In this context, we aimed to investigate the antimicrobial potential of Ziziphus honey (ZH) against twelve clinical bacterial strains and several yeasts and molds using in vitro and computational approaches. The well-diffusion assay revealed that ZH was able to induce growth inhibition of most Gram-positive and Gram-negative bacteria. The high mean growth inhibition zone (mGIZ) was recorded in E. coli (Clinical strain, 217), S. aureus followed by E. coli ATCC 10536 (mGIZ values: 41.00 ± 1 mm, 40.67 ± 0.57 mm, and 34.67 ± 0.57 mm, respectively). The minimal bactericidal concentrations (MBCs) and minimal fungicidal concentration values (MFCs) from approximately 266.33 mg/mL to over 532.65 mg/mL. Molecular docking results revealed that the identified compounds maltose, 2-furoic acid, isopropyl ester, 2,4-imidazolidinedione, 5-(2-methylpropyl)-(S)- and 3,4,5-trihydroxytoluene, S-Methyl-L-Cysteine, 2-Furancarboxylic acid, L-Valine-N-ethoxycarbonyl, Hexanoic acid, 3,5,5-trimethyl-, Methyl-beta-D-thiogalactoside, gamma-Sitosterol, d-Mannose, 4-O-Methylmannose, 2,4-Imidazolidinedione, 5-(2-methylpropyl)- (S) were found to have good affinity for targeted receptor, respectively. Through a 100-ns dynamic simulation research, binding interactions and stability between promising phytochemicals and the active residues of the studied enzymes were confirmed. The ADMET profiling of all identified compounds revealed that most of them could be qualified as biologically active with good absorption and permeation. Overall, the results highlighted the efficiency of ZH against the tested clinical pathogenic strains. The antimicrobial potential and the potency displayed by the identified compounds could imply their further pharmacological applications.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Mel , Ziziphus , Antibacterianos/farmacologia , Staphylococcus aureus , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas , Escherichia coli , Simulação de Acoplamento Molecular , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química
10.
J Mol Recognit ; 37(1): e3067, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956676

RESUMO

Mitogen-activated protein kinase 7 (MAPK7) is a serine/threonine protein kinase that belongs to the MAPK family and plays a vital role in various cellular processes such as cell proliferation, differentiation, gene transcription, apoptosis, metabolism, and cell survival. The elevated expression of MAPK7 has been associated with the onset and progression of multiple aggressive tumors in humans, underscoring the potential of targeting MAPK7 pathways in therapeutic research. This pursuit holds promise for the advancement of anticancer drug development by developing potential MAPK7 inhibitors. To look for potential MAPK7 inhibitors, we exploited structure-based virtual screening of natural products from the ZINC database. First, the Lipinski rule of five criteria was used to filter a large library of ~90,000 natural compounds, followed by ADMET and pan-assay interference compounds (PAINS) filters. Then, top hits were chosen based on their strong binding affinity as determined by molecular docking. Further, interaction analysis was performed to find effective and specific compounds that can precisely bind to the binding pocket of MAPK7. Consequently, two compounds, ZINC12296700 and ZINC02123081, exhibited significant binding affinity and demonstrated excellent drug-like properties. All-atom molecular dynamics simulations for 200 ns confirmed the stability of MAPK7-ZINC12296700 and MAPK7-ZINC02123081 docked complexes. According to the molecular mechanics Poisson-Boltzmann surface area investigation, the binding affinities of both complexes were considerable. Overall, the result suggests that ZINC12296700 and ZINC02123081 might be used as promising leads to develop novel MAPK7 inhibitors. Since these compounds would interfere with the kinase activity of MAPK7, therefore, may be implemented to control cell growth and proliferation in cancer after required validations.


Assuntos
Produtos Biológicos , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Serina-Treonina Quinases/química , Inibidores de Proteínas Quinases/química
11.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067422

RESUMO

Illicium verum, or star anise, has many uses ranging from culinary to religious. It has been used in the food industry since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained via hydro-distillation of the aerial parts of Illicium verum. Twenty-four components were identified representing 92.55% of the analyzed essential oil. (E)-anethole (83.68%), limonene (3.19%), and α-pinene (0.71%) were the main constituents of I. verum EO. The results show that the obtained EO was effective against eight bacterial strains to different degrees. Concerning the antibiofilm activity, trans-anethole was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that I. verum EO possesses more potent inhibitory effects on the swarming behavior of PAO1 when compared to trans-anethole, with the percentage reaching 38% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirmed their important pharmacokinetic and drug-likeness properties. The in silico study using a molecular docking approach revealed a high binding score between the identified compounds with known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results suggest I. verum EO to be a potentially good antimicrobial agent to prevent food contamination with foodborne pathogenic bacteria.


Assuntos
Illicium , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Percepção de Quorum , Illicium/química , Simulação de Acoplamento Molecular , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Pseudomonas aeruginosa
12.
Artigo em Inglês | MEDLINE | ID: mdl-38085438

RESUMO

In the face of rising antibiotic resistance and the need for novel therapeutic approaches against cancer, the present study delves into the various facets of biosynthesized silver nanoparticles (AgNPs) derived from the probiotic strain Lactobacillus casei (AgNPs-LC), assessing their efficacy in combating bacterial infections, disrupting biofilm formation, interfering with quorum sensing mechanisms, and exhibiting anti-cancer properties. The results showed that the AgNPs-LC had a spherical shape with an average size of 15 nm. The biosynthesized AgNPs-LC showed a symmetrical absorption spectrum with a peak at 458 nm with a diameter of 5-20 nm. AgNPs-LC exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria and inhibited the biofilm formation (> 50% at sub-MIC) and quorum sensing-mediated virulence factors, such as the production of violacein in C. violaceum (> 80% at sub-MIC), pyocyanin in P. aeruginosa (> 70% at sub-MIC), and prodigiosin in S. marcescens (> 80% at sub-MIC). The exopolysaccharides (EPS) were also found to reduce in the presence of AgNPs-LC. Furthermore, the AgNPs-LC showed anti-cancer and anti-metastasis activity via inhibiting cell migration and invasion of human lung cancer (A-549) cells. Overall, the present study brings out the multifaceted therapeutic capabilities of AgNPs-LC which offer exciting prospects for the development of innovative biomedical and pharmaceutical interventions, making AgNPs-LC a versatile and promising candidate for a wide range of applications in healthcare and medicine. However, further research is essential to fully harness their therapeutic potential.

13.
ACS Omega ; 8(50): 48344-48359, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144096

RESUMO

Breast cancer is a major global health issue for women. Thyme oil, extracted from Thymus vulgaris L., has shown promising anticancer effects. In the present study, we investigated how Thyme oil can influence breast cancer treatment using a multimethod approach. We used network pharmacology to identify the active compounds of Thyme oil, their molecular targets, and the pathways involved in breast cancer. We found that Thyme oil can modulate several key proteins (EGFR, AKT1, ESR1, HSP90AA1, STAT-3, SRC, IL-6, HIF1A, JUN, and BCL2) and pathways (EGFR tyrosine kinase inhibitor resistance, prolactin signaling pathway, HIF-1 signaling pathway, estrogen signaling pathway, ERBB signaling pathway, AGE-RAGE signaling pathway, JAK-STAT signaling pathway, FoxO signaling pathway, and PI3K-AKT signaling pathway) related to breast cancer progression. We then used molecular docking and dynamics to study the interactions and stability of the Thyme oil-compound complexes. We discovered three potent compounds (aromadendrene, α-humulene, and viridiflorene) that can bind strongly to important breast cancer proteins. We also performed in vitro experiments on MCF-7 cells to confirm the cytotoxicity and antiproliferative effects of Thyme oil. We observed that Thyme oil can inhibit cancer cell growth and proliferation at a concentration of 365.37 µg/mL. Overall, our results provide a comprehensive understanding of the pharmacological mechanism of Thyme oil in breast cancer treatment and suggest its potential as a new or adjuvant therapy. Further studies are needed to validate and optimize the therapeutic efficacy of Thyme oil and its active compounds.

14.
Pathogens ; 12(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003833

RESUMO

Candidiasis, caused by opportunistic fungal pathogens of the Candida genus, poses a significant threat to immunocompromised individuals. Natural compounds derived from medicinal plants have gained attention as potential sources of anti-fungal agents. Ajwa dates (Phoenix dactylifera L.) have been recognized for their diverse phytochemical composition and therapeutic potential. In this study, we employed a multi-faceted approach to explore the anti-candidiasis potential of Ajwa dates' phytochemicals. Utilizing network pharmacology, we constructed an interaction network to elucidate the intricate relationships between Ajwa dates phytoconstituents and the Candida-associated molecular targets of humans. Our analysis revealed key nodes in the network (STAT3, IL-2, PTPRC, STAT1, CASP1, ALB, TP53, TLR4, TNF and PPARG), suggesting the potential modulation of several crucial processes (the regulation of the response to a cytokine stimulus, regulation of the inflammatory response, positive regulation of cytokine production, cellular response to external stimulus, etc.) and fungal pathways (Th17 cell differentiation, the Toll-like receptor signaling pathway, the C-type lectin receptor signaling pathway and necroptosis). To validate these findings, molecular docking studies were conducted, revealing the binding affinities of the phytochemicals towards selected Candida protein targets of humans (ALB-rutin (-9.7 kJ/mol), STAT1-rutin (-9.2 kJ/mol), STAT3-isoquercetin (-8.7 kJ/mol), IL2-ß-carotene (-8.5 kJ/mol), CASP1-ß-carotene (-8.2 kJ/mol), TP53-isoquercetin (-8.8 kJ/mol), PPARG-luteolin (-8.3 kJ/mol), TNF-ßcarotene (-7.7 kJ/mol), TLR4-rutin (-7.4 kJ/mol) and PTPRC-rutin (-7.0 kJ/mol)). Furthermore, molecular dynamics simulations of rutin-ALB and rutin-STAT1 complex were performed to gain insights into the stability and dynamics of the identified ligand-target complexes over time. Overall, the results not only contribute to the understanding of the molecular interactions underlying the anti-fungal potential of specific phytochemicals of Ajwa dates in humans but also provide a rational basis for the development of novel therapeutic strategies against candidiasis in humans. This study underscores the significance of network pharmacology, molecular docking and dynamics simulations in accelerating the discovery of natural products as effective anti-fungal agents. However, further experimental validation of the identified compounds is warranted to translate these findings into practical therapeutic applications.

15.
ACS Omega ; 8(43): 39964-39983, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929080

RESUMO

The structure and function of the brain greatly rely on different signaling pathways. The wide variety of biological processes, including neurogenesis, axonal remodeling, the development and maintenance of pre- and postsynaptic terminals, and excitatory synaptic transmission, depends on combined actions of these molecular pathways. From that point of view, it is important to investigate signaling pathways and their crosstalk in order to better understand the formation of toxic proteins during neurodegeneration. With recent discoveries, it is established that the modulation of several pathological events in Alzheimer's disease (AD) due to the mammalian target of rapamycin (mTOR), Wnt signaling, 5'-adenosine monophosphate activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), and sirtuin 1 (Sirt1, silent mating-type information regulator 2 homologue 1) are central to the key findings. These include decreased amyloid formation and inflammation, mitochondrial dynamics control, and enhanced neural stability. This review intends to emphasize the importance of these signaling pathways, which collectively determine the fate of neurons in AD in several ways. This review will also focus on the role of novel synthetic and natural bioactive molecules in balancing the intricate crosstalk among different pathways in order to prolong the longevity of AD patients.

16.
Biochimie ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918463

RESUMO

Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.

18.
Front Pharmacol ; 14: 1276179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795023

RESUMO

Introduction: Hyperphosphorylation of tau is an important event in Alzheimer's disease (AD) pathogenesis, leading to the generation of "neurofibrillary tangles," a histopathological hallmark associated with the onset of AD and related tauopathies. Microtubule-affinity regulating kinase 4 (MARK4) is an evolutionarily conserved Ser-Thr (S/T) kinase that phosphorylates tau and microtubule-associated proteins, thus playing a critical role in AD pathology. The uncontrolled neuronal migration is attributed to overexpressed MARK4, leading to disruption in microtubule dynamics. Inhibiting MARK4 is an attractive strategy in AD therapeutics. Methods: Molecular docking was performed to see the interactions between MARK4 and galantamine (GLT). Furthermore, 250 ns molecular dynamic studies were performed to investigate the stability and conformational dynamics of the MARK4-GLT complex. We performed fluorescence binding and isothermal titration calorimetry studies to measure the binding affinity between GLT and MARK4. Finally, an enzyme inhibition assay was performed to measure the MARK4 activity in the presence and absence of GLT. Results: We showed that GLT, an acetylcholinesterase inhibitor, binds to the active site cavity of MARK4 with an appreciable binding affinity. Molecular dynamic simulation for 250 ns demonstrated the stability and conformational dynamics of the MARK4-GLT complex. Fluorescence binding and isothermal titration calorimetry studies suggested a strong binding affinity. We further show that GLT inhibits the kinase activity of MARK4 significantly (IC50 = 5.87 µM). Conclusion: These results suggest that GLT is a potential inhibitor of MARK4 and could be a promising therapeutic target for AD. GLT's inhibition of MARK4 provides newer insights into the mechanism of GLT's action, which is already used to improve cognition in AD patients.

19.
Heliyon ; 9(8): e19324, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37664756

RESUMO

Fruit of Carissa opaca Stapf ex Haines (C. opaca) is a feed additive and is commonly used against cardiac dysfunction, fever, asthma, diarrhea, gastrointestinal ailments, and skin diseases. In this study, we aimed to evaluate the metabolic profile and antioxidant potential of C. opaca fruit against carbon tetrachloride (CCl4)-induced cardiotoxicity and testicular toxicity in rats. Gas Chromatoghraphy-Mass Spectrometry (GC-MS) analysis of C. opaca fruit for the identification of potential metabolic profile, followed by methanolic extract of C. opaca and its derived fractions including n-hexane, ethyl acetate, chloroform, butanol, and aqueous were used to assess the antioxidant potential of fruits. Ten groups of rats received different treatments and got evaluated for cardiac and testicular antioxidant enzymes, histological architecture, and serum hormonal levels. GC-MS analysis of methanolic extract of C. opaca fruit showed the presence of some bioactive metabolites like cyclodecane, diethyl 2,6-pyridine dicarboxylate, tetrahydro-geraniol, S-[2-[N, N-Dimethylamino]ethyl]morpoline, 2,3-Methylenedioxyphenol, alpha-d-Glucopyranoside, 5,10-Diethoxy-2,3,7,8-tetrahydro-1H, 6H-dipyrrolo [1,2-a; 1',2'-d] pyrazine and 1,3-Benzothiazol-2(3H)-one,3-(3,3-dimethyl-1-oxobutyl) that corresponds the medicinal properties of C. opaca fruit. Prepared fractions of C. opaca fruits mitigated the toxicity induced by CCl4 in the heart and testicular tissues of rats. Oxidative stress was caused by the inhibition of activities of glutathione and other antioxidant enzymes of the body, while on the other hand elevating the levels of nitrite and hydrogen peroxide. Treatment with C. opaca fruit extract normalized the levels of enzymes, reproductive hormones, and free radicals thus restoring the histopathological and enzymatic biomarkers towards the normal group. The study supports the indigenous use of fruits as an alternative medicine against cardiac dysfunction by providing scientific evidence of protection against CCl4-induced injuries, and it also concludes the antioxidant defensive role in testicular tissues.

20.
Plants (Basel) ; 12(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37653914

RESUMO

Anethum graveolens L. has been known as an aromatic, medicinal, and culinary herb since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained by hydro-distillation of the aerial parts. Twelve components were identified, representing 92.55% of the analyzed essential oil. Limonene (48.05%), carvone (37.94%), cis-dihydrocarvone (3.5%), and trans-carvone (1.07%) were the main identified constituents. Results showed that the obtained EO was effective against eight bacterial strains at different degrees. Concerning the antibiofilm activity, limonene was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that A. graveolens induced more potent inhibitory effects in the swarming behavior of the PAO1 strain when compared to limonene, with a percentage reaching 33.33% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirms their important pharmacokinetic and drug-like properties. The in-silico study using molecular docking approaches reveals a high binding score between the identified compounds and known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results highlight the possible use of A. graveolens EO to prevent food contamination with foodborne pathogenic bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...